macro_eeg_model.simulation.simulator#
Classes#
The Simulator class is responsible for simulating EEG data using a vector autoregression (VAR) model. |
Module Contents#
- class macro_eeg_model.simulation.simulator.Simulator(lag_connectivity_weights, sample_rate, nr_lags, nr_nodes, t_secs, t_burnit, noise_color, std_noise)[source]#
The Simulator class is responsible for simulating EEG data using a vector autoregression (VAR) model. It generates synthetic EEG signals based on the provided lagged connectivity weights, noise characteristics, and other simulation parameters.
- _lag_connectivity_weights#
The lagged connectivity weights matrix used for the VAR model.
- Type:
numpy.ndarray
- _sample_rate#
The sample rate of the simulation in Hz.
- Type:
int
- _nr_lags#
The number of lags (p) in the VAR(p) model.
- Type:
int
- _nr_nodes#
The number of nodes (channels) in the simulation.
- Type:
int
- _t_secs#
The total time of the simulation in seconds.
- Type:
int
- _t_burnit#
The burn-in time for the simulation in seconds.
- Type:
int
- _noise_color#
The color of the noise to be used in the simulation (‘white’ or ‘pink’).
- Type:
str
- _std_noise#
The standard deviation of the noise to be used in the simulation.
- Type:
float
- __init__(lag_connectivity_weights, sample_rate, nr_lags, nr_nodes, t_secs, t_burnit, noise_color, std_noise)[source]#
Initializes the Simulator with the provided parameters.
- Parameters:
lag_connectivity_weights (numpy.ndarray) – The lagged connectivity weights matrix used for the VAR model.
sample_rate (int) – The sample rate of the simulation in Hz.
nr_lags (int) – The number of lags (p) in the VAR(p) model.
nr_nodes (int) – The number of nodes (channels) in the simulation.
t_secs (int) – The total time of the simulation in seconds.
t_burnit (int) – The burn-in time for the simulation in seconds.
noise_color (str) – The color of the noise to be used in the simulation (‘white’ or ‘pink’).
std_noise (float) – The standard deviation of the noise to be used in the simulation.
- simulate(verbose=False)[source]#
The simulation generates synthetic EEG signals by applying the VAR model to the provided lagged connectivity weights and adding noise.
- Parameters:
verbose (bool, optional) – If True, displays a progress bar during the simulation (default is False).
- Returns:
A 2D array of shape (samples, nodes) containing the simulated EEG data.
- Return type:
numpy.ndarray
- Raises:
ValueError – If an invalid noise color is provided.
AssertionError – If any of the input parameters are invalid (e.g., non-positive values for number of lags, time, or std).